# EXTRA CHAPTER 3 REVIEW PROBLEMS 

PEYAM RYAN TABRIZIAN

## True-False Quiz

1. $(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)$
2. $(f g)^{\prime}(x)=f^{\prime}(x) g^{\prime}(x)$
3. $(f(g(x)))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)$
4. $(\sqrt{f(x)})^{\prime}=\frac{f^{\prime}(x)}{2 \sqrt{f(x)}}$
5. $(f(\sqrt{x}))^{\prime}=\frac{f^{\prime}(x)}{2 \sqrt{x}}$
6. If $y=e^{2}$, then $y^{\prime}=0$
7. $\left(10^{x}\right)^{\prime}=x 10^{x-1}$
8. $(\ln (10))^{\prime}=\frac{1}{10}$
9. $\left(\tan ^{2} x\right)^{\prime}=\sec ^{2} x$
10. $\left(\left|x^{2}+x\right|\right)^{\prime}=|2 x+1|$
11. The derivative of a polynomial is a polynomial
12. If $f(x)=\left(x^{6}-x^{4}\right)^{5}$, then $f^{(31)}(x)=0$
13. The derivative of a rational function is a rational function
14. An equation of the tangent line to the parabola $y=x^{2}$ at $(-2,4)$ is $y-4=$ $2 x(x+2)$
15. If $g(x)=x^{5}$, then $\lim _{x \rightarrow 2} \frac{g(x)-g(2)}{x-2}=80$

## Problems

## 3.R.68.

(a) By differentiating the double-angle formula

$$
\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)
$$

obtain the double-angle formula for sin
(b) By differentiating the addition formula

$$
\sin (x+a)=\sin (x) \cos (a)+\cos (x) \sin (a)
$$

obtain the addition formula for the cosine function
3.R.87. If the position of an object is $s(t)=A e^{-c t} \cos (\omega t+\delta)$, find its velocity and its acceleration
3.R.94. Cobalt-64 has a half-life of 5.24 years.
(a) Find the mass that remains from a $100-\mathrm{mg}$ sample after 20 years.
(b) How long would it take for the mass to decay to 1 mg

[^0]3.R.99. A balloon is rising at a constant speed of $5 \mathrm{ft} / \mathrm{s}$. A boy is cycling along a straight road at a speed of $15 \mathrm{ft} / \mathrm{s}$. When he passes under the balloon, it is 45 ft above him. How fast is the distance between the boy and the balloon increasing 3 s later?
3.R.101. The angle of elevation of the sun is decreasing at a rate of $0.25 \mathrm{rad} / \mathrm{h}$. How fast is the shadow cast by a 400 -ft-tall building increasing when the angle of elevation of the sun is $\frac{\pi}{6}$.
3.R.105. A window has the shape of a square surmounted by a semicircle. The base of the window is measured as having width 60 cm witha possible error in measurement of 0.1 cm . Use differentials to estimate the maximum possible error in computing the area of the window.
3.R.111. If $(f(2 x))^{\prime}=x^{2}$, find $f^{\prime}(x)$

## Answers

## TRUE-FALSE.

(1) TRUE
(2) FALSE
(3) TRUE
(4) TRUE
(5) FALSE $\left(\frac{f^{\prime}(\sqrt{x})}{2 \sqrt{x}}\right)$
(6) FALSE ( $e^{2}$ is a constant, so 0 )
(7) FALSE $\left(y^{\prime}=\ln (10) 10^{x}\right.$, exponential rule)
(8) FALSE $(\ln 10$ is a constant, so 0$)$
(9) FALSE $\left(2 \tan (x) \sec ^{2}(x)\right)$
(10) FALSE $\left((2 x+1) \frac{x^{2}+x}{\left|x^{2}+x\right|}\right.$; Write $\left|x^{2}+x\right|=\sqrt{\left(x^{2}+x\right)^{2}}$ and use the chain rule)
(11) TRUE
(12) TRUE ( $f$ is a polynomial of degree 30 , so its 31 st derivative is 0 )
(13) TRUE (By the quotient rule and (11))
(14) $\mathbf{F A L S E}(y-4=-4(x+2)$; it's not even the equation of a line!)
(15) TRUE $\left(=g^{\prime}(2)=5(2)^{4}=80\right)$

## 3.R.68.

(a) $\sin (2 x)=2 \sin (x) \cos (x)$
(b) $\cos (x+a)=\cos (x) \cos (a)-\sin (x) \sin (a)$ (The important thing here is that you differentiate with respect to $x$, leaving $a$ constant)

## 3.R.87.

$$
\begin{aligned}
& v(t)=s^{\prime}(t)=-A c e^{-c t} \cos (\omega t+\delta)-A \omega e^{-c t} \sin (\omega t+\delta)=-A e^{-c t}(c \cos (\omega t+\delta)+\omega \sin (\omega t+\delta)) \\
& a(t)=v^{\prime}(t)=A c e^{-c t}(c \cos (\omega t+\delta)+\omega \sin (\omega t+\delta))-A e^{-c t}\left(-c \omega \sin (\omega t+\delta)+\omega^{2} \cos (\omega t+\delta)\right)
\end{aligned}
$$

3.R.94. $y(t)=100 \times 2^{-\frac{t}{5.24}}$
(a) $y(20)=100 \times 2^{-\frac{20}{.24}} \approx 7.1 \mathrm{mg}$
(b) $t=\frac{5.24 \ln (100)}{\ln (2)} \approx 34.81$ years

## 3.R.99.

(1) $D^{2}=x^{2}+y^{2}$ (Typical Pythagorean theorem problem; Draw a right triangle in the shape of an $L$, and let $x$ be the bottom side, $y$ be the left-hand-side, and $D$ be the hypothenus)
(2) $2 D \frac{d D}{d t}=2 x \frac{d x}{d t}+2 y \frac{d y}{d t}$
(3) $x=3 \times 15=45$ (velocity $\times$ time), $y=45+5 \times 3=60$ (initial height + velocity $\times$ time $), \frac{d x}{d t}=15, \frac{d y}{d t}=5$, and $D=\sqrt{x^{2}+y^{2}}=\sqrt{45^{2}+60^{2}}=$ $\sqrt{5625}=75$ which gives:

$$
\frac{d D}{d t}=\frac{45 \times 15+60 \times 5}{75}=13
$$

## 3.R.101.

(1) $\tan (\theta)=\frac{400}{x}$ (Typical trigonometry-problem. Draw another triangle in the shape of an $L$, let 400 be the left-hand-side, $x$ be the bottom, and the angle on the right be $\theta$ )
(2) $\sec ^{2}(\theta) \frac{d \theta}{d t}=-\frac{400}{x^{2}} \frac{d x}{d t}$
(3) $x=400 \sqrt{3}$ (redraw the same triangle, but this time with $\theta=\frac{\pi}{6}$ ), $\frac{d \theta}{d t}=$ -0.25 , and $\theta=\frac{\pi}{6}$, which gives:

$$
\frac{d x}{d t}=400
$$

3.R.105. The area of the window is given by $y=x^{2}+\frac{\pi}{2}\left(\frac{x}{2}\right)^{2}=\left(1+\frac{\pi}{8}\right) x^{2}$. Then:

$$
d y=\left(1+\frac{\pi}{8}\right) 2 x d x=\left(1+\frac{\pi}{8}\right)(120)(0.1)=12+\frac{3 \pi}{2} \approx 16.71
$$

3.R.111. $f^{\prime}(2 x)=\frac{x^{2}}{2}$, so $f^{\prime}(x)=\frac{\left(\frac{x}{2}\right)^{2}}{2}=\frac{x^{2}}{8}$


[^0]:    Date: Friday, October 25th, 2013.

